How do CPL measurements of TTL cirrus complement information from CALIPSO?

CPL provides:

- Better sensitivity: detection of optically thin TTL cirrus
- Better spatial resolution: small-scale structures in TTL cirrus

TTL cirrus optical depth frequency distribution [Davis et al., 2010]

 CPL only detects about half of the subvisible cirrus detected by CALIPSO

• The frequency distribution of clouds detected by CALIPSO peaks about 2 km below the cold point.

TTL cirrus extinction versus height [Davis et al., 2010]

- Extinctions between about 15.8 km and cold point (\simeq 17 km) typically have extinctions below CALIPSO's threshold.
- Clouds near cold point are most important for dehydration.

- Science question: do cirrus that are too tenuous for detection by CALIPSO occur frequently just below the tropical cold point?
- What ATTREX can provide:
 - Extensive CPL measurements with high sensitivity
 - Measurements of relative humidity structure in uppermost TTL

Resolution of small-scale horizontal structure

- Under some conditions, circulation driven by TTL cirrus radiative heating can maintain clouds
- Radiative heating drives small-scale convection (cell widths \simeq 1 km)

- Factors determining the importance of radiatively-generated impacts on TTL cirrus lifecycle:
 - Ice crystal size
 - Thermal stabitlity
 - Wind shear
 - Presence of anvil cirrus below
 - Temperature variability
- What ATTREX can provide:
 - Extensive measurements of TTL cirrus structure for comparison with models
 - Additional measurements of TTL cirrus microphysical properties
 - Case studies for modeling